
Testing Group Commutativity

Laura Mancinska
(ID 20286922)

April 14, 2008

Contents

1 Introduction 2

2 Algorithms for group commutativity 3
2.1 Classical algorithms . 3
2.2 Quantum algorithm . 5

2.2.1 Constructing random walk 5
2.2.2 Evaluating parameters . 7

3 Lower bounds 10

4 Conclusion 11

1

1 Introduction

Often we are interested in finding problems that can be solved faster if we
employ the phenomena of quantum world. In this essay we will see how quantum
strategies can help us in testing group commutativity. For group commutativity
problem the quantum speedup will not be so impressing as we have seen, for
example, in special cases of hidden subgroup problem.

Let us now remind what a commutative or abelian group is.

Definition. Group G is said to be commutative or abelian if xy = yx, for all
x, y ∈ G.

In many cases we cast our problem in a black box model, where the input
to the problem is provided by a black-box. It turns out that it is often easier
to prove lower bounds in a black-box model. This model leads us to notion of
query complexity. Query complexity of a problem is the number of queries we
have to make in order to solve the problem. In this essay we will put group G
to be tested for commutativity in a black-box.
Black-box group model
• Elements of group are encoded as words over a finite alphabet (in this

essay we assume that the encoding of group elements is unique)

• Group operation is performed by a black box containing oracles OG and
O−1

G

OG |g, h〉 = |g, gh〉
O−1

G |g, h〉 =
∣∣g, g−1h

〉

Note that using oracle O−1
G we can get identity of the group with just one

query:
O−1

G |g, g〉 =
∣∣g, g−1g

〉
= |g, id〉

Once we have identity element we can invert any group element g using one
query:

O−1
G |g, id〉 =

∣∣g, g−1id
〉

=
∣∣g, g−1

〉
Thus we see, that although oracle O−1

G might seem strange at first, it can serve
us in finding inverses of group elements. Black-box groups were first discussed
by Babai and Szemerédi in 1984. Mosca and Watrous have studied black-box
groups and their properties in quantum context.

Now we are ready to formally state the problem, we want to solve.

Group commutativity problem.

Input: Generators g1, . . . , gk of G (specified as n−bit strings and n is given)
Black box: Oracles OG and O−1

G

Task: Determine whether G is abelian

2

2 Algorithms for group commutativity

2.1 Classical algorithms

The straightforward classical algorithm for testing group commutativity is to
check each pair of group generators g1, . . . , gk to see if they commute. This
algorithm requires 2 ·

(
k
2

)
∈ Θ(k2) queries. Note that we are using deterministic

strategy and we always get the correct answer. Pak [2] has shown that this
naive algorithm has optimal query complexity up to a constant factor if only
deterministic strategies are allowed.

If we allow randomized strategies, it turns out that we can do better. Pak
[2] has come up with a randomized algorithm that determines whether group
G is abelian in time linear in k, the number of generators of G. The algorithm
itself is very simple. A bit harder it is to understand why it really works (see
lemma 1). Yet first, for the purpose of explaining Pak’s randomized algorithm,
we need to introduce notion of random subproduct.

Definition. Define random subproduct as

h = ga1
1 . . . gak

k ,

where g1, . . . , gk are generators of group G and ai ∈ {0, 1} takes each of the
values with equal probability.

Since Pak’s algorithm is not exact, there is some probability that it will
give incorrect answer. In fact, the error is one-sided. If algorithm decides that
group is not abelian, we can be completely sure, that it is indeed the case.
This is because in such a case algorithm has found two group elements that do
not commute. However, algorithm could be wrong, if it decides that group is
not abelian. If we want error probability to be lower than p, we have to pick
c > log p/ log 3

4 , where c is the number of iterations (see algorithm below). Note
that the relationship between error probability and the number of iterations is
good, since exponential rate of decrease in error probability corresponds to only
linear increase in the number of iterations.

Pak’s randomized algorithm:

1. Pick two random subproducts h1, h2

2. Test whether h1h2 = h2h1

3. Repeat steps 1 and 2 for c times or until non-commuting random subprod-
ucts are found

4. Answer that G is abelian if all of the tested subproducts commuted, oth-
erwise say that G is not abelian

Note that we need to make queries only for the execution of steps 1 and 2.
In order to pick each of the two random subproducts in step 1, we need to do
no more than k group operations. In order to test whether h1 and h2 commute,
we need to do 2 group operations. Therefore, Pak’s algorithm requires 2c(k+1)
queries to ensure that the error probability is less than 1− (3/4)c.

Now we turn to the task of showing that Pak’s algorithm really works. This
will be done with the help of the following Lemma 1 and Theorem 1.

3

Lemma 1 (Pak). Let g1, . . . , gk be generators of G, H be a proper subgroup
of G and let h be a random subproduct. Then

Pr[h /∈ H] ≥ 1
2

Proof. Let i be the smallest index for which gi /∈ H. Now we can write our
random subproduct as

h =
(
ga1

1 . . . g
ai−1
i−1

)
gai

i

(
g

ai+1
i+1 . . . gak

k

)
= ugai

i v,

where u ∈ H. We consider two cases.

1. Assume v ∈ H. Then with probability 1/2 we have ai = 1 and therefore
h = ugiv /∈ H.

2. Assume v /∈ H. Then with probability 1/2 we have ai = 0 and therefore
h = uv /∈ H.

Since in both of the possible cases with probability at least one half, we have
h /∈ H, we have proved the desired result.

Theorem 1 (Pak). Let g1, . . . , gk be generators of G and let h1, h2 be random
subproducts. If group G is not abelian, then

Pr[h1h2 = h2h1] <
3
4

Proof. If G is not abelian then its largest abelian subgroup, the centralizer of
G, C(G) is a proper subroup of G. According to Lemma 1 we have

Pr[h1 /∈ C(G)] ≥ 1/2

Assume h1 /∈ C(G). Then elements of G commuting with h1, the centralizer of
h1, C(h1) form a proper subgroup of G. Therefore, again according to Lemma 1
we have

Pr[h2 /∈ C(h1)] ≥ 1/2

If we sum up all the above, we get the desired result:

Pr[h1h2 = h2h1] = 1− Pr[h1h2 6= h2h1] = 1− Pr[h1 /∈ C(G)] · Pr[h2 /∈ C(h1)] <

< 1− 1
4

=
3
4

It is easy to see that the above theorem implies the expressions relating the
number of iterations and error probability given in the description of the Pak’s
randomized algorithm.

4

2.2 Quantum algorithm

In this section we will present a quantum algorithm for testing group commu-
tativity with query complexity O(k2/3 log k). Thus, we see that with quantum
strategies we can solve group commutativity problem with less queries than by
using only classical strategies. The quantum algorithm discussed in this section
will be based on quantum walk. We will make use of Szegedy’s construction
that allows us to quantize classical walk on a graph and obtain a quantum al-
gorithm. More precisely, we will use the algorithm whose existence is asserted
in theorem given by Szegedy in [3] that will follow shortly.

Now let us introduce some notation that we will need in the statement of
Szegedy’s theorem. Let P be a symmetric Markov chain on graph G = (V,E),
where δ is the eigenvalue gap of P . Let M ⊂ V be the set of marked vertices.
At each vertex we store some auxiliary data. We have complete knowledge
about Markov chain P . Yet in order to find out which vertices are marked and
determine the data to be stored at each vertex, we have to query a black box.
Consider the following query costs:

• Setup cost, S - the cost associated with the preparation of the initial state
which is uniform superposition over vertices V . Note that this cost in fact
arises from determining the actual data to be stored at a vertex.

• Setup cost, U - the cost associated with updating the data stored as we
move from some vertex to an adjacent one.

• Setup cost, C - the cost associated with checking, whether a particular
vertex is marked.

Theorem 2 (Szegedy). Assume that we are promised that either the set of
marked vertices M is empty or |M | ≥ ε |V |. Then there is a quantum algorithm
for determining which of these two cases holds using

S +O

(
1√
δε

)
(U + C) (1)

queries to the black box.

In the next two subsections we will present a graph on which the walk will
take place and estimate the parameters in equation (1).

2.2.1 Constructing random walk

Let Sl be the set of all l-tuples of distinct elements from {1, . . . , k}. We define
the group element corresponding to a l-tuple u = (u1, . . . , ul) ∈ Sl to be

gu = gu1 . . . gul

Finally, let tu be the balanced binary tree with generators gu1 , . . . , gul
as leaves.

We put the generators in the same order as their indices where in l-tuple u, i.e.,
gu1 is the leftmost leave and gul

is the rightmost leave. If l is not a power of
two, we place the deepest leaves to the left. The value of each inner node of
tu is obtained by composing its children group elements with group operation.
Note that the root of tu will be gu.

5

gu

g3 × g5 g10 × g4

g3 g5 g10 g4

Figure 1: Binary tree tu corresponding to l-tuple u = (u1, u2, u3, u4) =
(3, 5, 10, 4) ∈ S4

Example 1. Assume l = 4, k = 20, u = (u1, u2, u3, u4) = (3, 5, 10, 4) ∈ S4.
Then gu = g3 · g5 · g10 · g4 and the corresponding binary tu can be seen in Fig. 1.

Random walk on Sl

• Vertices are l-tuples from Sl. At each vertex u = (u1, . . . , ul) ∈ Sl we
store the corresponding binary tree tu

• Transitions from each vertex u = (u1, . . . , ul) ∈ Sl (denote the transition
matrix with P) :

– With probability 1/2 stay at u = (u1, . . . , ul)

– With probability 1/2 do:

1. Pick a random position (leave) i ∈ {1, . . . , l} and a random gen-
erator index j ∈ {1, . . . , k}

2. If j = um for some m, exchange ui and um, else set ui = j

3. Update tree tu

The random walk (Markov chain) on Sl × Sl that will form a basis for
quantum algorithm consists of two independent random walks on Sl:

• Vertices are pairs of l-tuples (u, v) ∈ Sl × Sl. At each vertex we store the
corresponding binary trees (tu, tv).

• If the transition matrix for the walk on Sl is P , then the transition matrix
for the walk on Sl × Sl is P ⊗ P .

We mark those vertices (u, v) ∈ Sl × Sl which provide us with a certificate
that group is not abelian, i.e.

M = {(u, v) ∈ Sl × Sl : gugv 6= gvgu}

6

2.2.2 Evaluating parameters

Evaluating fraction of marked vertices (ε)

Recall from Theorem 2 that ε ≤ |M | / |V |. By taking the largest possible ε we
get the best estimate for the query complexity (see equation (1)). Therefore, we
choose ε to be the fraction of marked vertices, i.e., ε = |M | / |V |. We proceed
with a lemma that will leed us to a lower bound of ε.

Lemma 2 (Magniez, Nayak). If G is not abelian and l = o(k), then

Pr
u,v∈Sl

[gugv 6= gvgu] ≥ const ·
(
l

k

)2

We omit the proof of this lemma (proof can be found in [1]). In order to
prove the above lemma Magniez and Nayak use similar ideas as we have seen
in Pak’s proof of Lemma 1 and Theorem 1. However, they do not use random
subproducts, since group elements gu, where u ∈ Sl, are obtained by taking
product of exactly l generators.

Theorem 3 (Magniez, Nayak). If G is not abelian and l = o(k), then ε =
Ω
(

(l/k)2
)

.

Proof. With the help of Lemma 2, we can easily lower bound the fraction of
marked vertices:

ε =
|M |
|V |

=
|{(u, v) ∈ Sl × Sl : gugv 6= gvgu}|

|Sl × Sl|
= Pr

u,v∈Sl

[gugv 6= gvgu] = Ω

((
l

k

)2
)

Evaluating spectral gap δ

Definition. Let P be a Markov chain on state space Ω. Then a coupling of
Markov chain P is a stochastic process Q on Ω× Ω such that∑

t∈Ω

Q[(u, v), (s, t)] = P [u, s] for all u, v, s ∈ Ω∑
s∈Ω

Q[(u, v), (s, t)] = P [v, t] for all u, v, t ∈ Ω

where P [u, v] is the probability of transition from state u to v.

These conditions say that if we view each of the components of a pair (u, v) ∈
Ω× Ω marginally, then it evolves according to the original Markov chain P .

Definition. The coupling time T of a coupling Q is the maximum expected
time (over all initial pairs (u, v) ∈ Ω×Ω) it takes for the both states in the pair
to coincide:

T = max
(u,v)

E [min {t : u(t) = v(t), u(0) = u, v(0) = v}],

where
(
u(t), v(t)

)
∈ Ω × Ω is a state after t steps of evolution under Q from

initial state (u, v) =
(
u(0), v(0)

)
.

7

Definition. Markov chain P is called ergodic if there exists t such that P t[u, v] > 0,
for all u, v.

Now we are ready to state a lemma that can easily be deduced from theorems
given in textbooks on Markov processes (see [1] for references to textbooks).
This lemma will turn out useful in proving Lemma 4 that will directly lead us
to a lower bound for spectral gap δ of a random walk on Sl.

Lemma 3. Let P be an ergodic Markov chain with non-negative eigenvalues
and let δ be the spectral gap of P . Let T be the coupling time for any valid
coupling defined on Ω×Ω, where Ω is the state space of Markov chain P . Then

δ ≤ 1
4e T

Lemma 4 (Magniez, Nayak). If l ≤ k
2 , then the spectral gap for the walk on

Sl is at least 1
8e l log l .

Proof. Recall that P is the transition matrix for the walk on Sl (see Section
2.2.1). Note that, because of self-loops, P can be expressed as P = 1/2(I+P ′),
where P ′ is a stochastic matrix. Moreover, P ′ is symmetric, as transition from
u ∈ Sl to v ∈ Sl occurs with the same probability as transition from v to u
(see section 2.2.1). Since eigenvalues of a symmetric stochastic matrix lie in
the interval [−1, 1], the eigenvalues of P lie within 1/2([1, 1] + [−1, 1]) = [0, 1].
Thus, eigenvalues of P are non-negative.

Note that in the random walk on Sl every state u ∈ Sl is reachable from any
state v ∈ Sl. Also, once we reach some state, we will stay there with non-zero
probability due to the self-loops. Therefore, we conclude that P is ergodic.

Now we see that the walk on Sl meets the requirements in Lemma 3. Thus,
we proceed with a construction of a valid coupling of transition matrix (Markov
chain) P . Consider stochastic process Q on Sl × Sl, where each of the states in
pair (u, v) ∈ Sl × Sl evolve according to Markov chain P and where all of the
random choices made are the same for both states in the pair. This means, if
we start from (u, v) and we stay at let’s say u, then we stay at v, too. On the
other hand, if we move away, then we pick the same position i and index j (see
Section 2.2.1) for both of the states in the pair (u, v). Let Dist(u, v) stand for
the number of positions in which l-tuple u differs from v. Suppose that we start
at (u, v) ∈ Sl×Sl and after one step of process Q we go to (s, t) ∈ Sl×Sl. Then
Dist(u, v) ≥ Dist(s, t). Also if d := Dist(u, v), then we have

Pr[Dist(u, v) > Dist(s, t)] ≥ Pr[ui 6= vi] · Pr[¬∃t : ut = vt = j] =

=
d

l
· k − (l − d)

k
≥ d

l
· k − l

k
≥ d

l
·
k − k

2

k
=

d

2l
,

where i is the randomly chosen position and j is the randomly chosen generator
index. This shows that distance decreases after one step of process Q with
probability at least d/2l.

The next step is to evaluate coupling time T for coupling Q. It can be shown
that if we start from state (u, v) and evolve according to Q, then both states in a
pair are expected to become the same after no more than 2l log l steps (see [1]).
If we combine this estimate of T with Lemma 3 we obtain the desired result.

8

Theorem 4 (Magniez, Nayak). If l ≤ k
2 , then the spectral gap for the walk on

Sl × Sl is at least 1
8e l log l .

Proof. Recall that if the transition matrix for the walk on Sl is P , then the
transition matrix for the walk on Sl×Sl is P ⊗P . The eigenvalues of P ⊗P can
be obtained by taking products of two eigenvalues of P . Since P is an ergodic,
stochastic matrix one of its eigenvalues is 1 and the absolute value for all the
other eigenvalues is less than 1. Therefore, if λ is an eigenvalue of P that lies
closest to 1, then λ plays the same role for matrix P ⊗ P . Thus, the spectral
gap for the walk on Sl × Sl is the same as for the walk on Sl, which according
to Lemma 4 is at least 1

8e l log l .

Evaluating setup, update and checking costs (S,U,C)

• Setup cost, S = Θ(l). The number of leaves and inner nodes in a binary
tree is roughly the same. Since we need one group operation to determine
inner node of a binary tree tu (u ∈ Sl), it takes roughly l group operations
to construct tree tu.

• Update cost, U = Θ(log(l)). Note that per one step of the walk on Sl we
replace no more than 2 leaves in the tree. Binary trees tu stored at vertices
have l leaves, thus their depth is log l. Therefore, we can update tree as
we ascend from the replaced leaves to root using 2 log l operations. In fact
our walk is composed of two independent walks on Sl and also we need to
do uncomputation. Therefore, we need around 8 log l group operations.

• Checking cost, C = O(1). Recall that vertex (u, v) ∈ Sl × Sl is marked
if gugv 6= gvgu. Moreover, at vertex (u, v) we store trees tu and tv that
have roots gu and gv respectively. Thus, the only thing we need to do is
to compute gugv and gvgu and compare them.

Now we have evaluated all the parameters in equation (1). So, we are ready
for the theorem that gives us an upper bound of the quantum query complexity
for the group commutativity problem.

Theorem 5. There is a quantum algorithm that solves group commutativity
problem using O(k2/3 log k) queries.

Proof. We apply Theorem 2 to the random walk on Sl × Sl constructed in
Section 2.2.1. Note that determining whether the set of marked vertices M is
empty is equivalent to determining whether group G is abelian. Therefore, there
is a quantum algorithm solving group commutativity with S+O

(
1/
√
δε
)

(U +
C) queries. If we plug in this formula the expressions obtained by evaluating
parameters δ, ε, S, U,C, we get

S +
1√
δε

(U + C) = O

(
l +

k log3/2 l√
l

)
(2)

Suppose we take l = k2/3. Note that in this way we are satisfying requirements
made both in Theorem 4 and Theorem 3. Now equation (2) turns into

O
(
k2/3 log k

)
.

9

3 Lower bounds

Let us now state problems which will turn out useful in proving lower bounds
for query complexity of group commutativity problem.

Unique collision problem.

Black-box: Function F : {1, . . . , k} → {1, . . . , k}
Input: Value of k
Task: Output YES if there exists a unique pair x 6= y ∈ {1, . . . , k} such that
F (x) = F (y). Output NO if F is a permutation

This is a promise problem, since we can give whatever answer, for example,
in case when there are two collisions. A variation of this problem is unique split
collision problem. In unique split collision we output ’YES’ if one of the elements
from the colliding pair is in {1, . . . , k/2} while other is in {k/2 + 1, . . . , k} and
k has to be even.

Lemma 5 (Szegedy, Nayak). Randomized and quantum query complexity for
unique split collision problem is Ω(k) and Ω(k2/3) respectively.

The above lemma can be proved by reducing unique split collision problem
to unique collision problem (see [1] for details of the proof).

Theorem 6 (Szegedy, Nayak). Randomized and quantum query complexity for
group commutativity problem is Ω(k) and Ω(k2/3) respectively.

Proof. We prove the theorem by reducing unique split collision to group com-
mutativity. We will construct group G that will be non-abelian if and only if
oracle function F : {1, . . . , k} → {1, . . . , k} has a split collision.

Let I,X, Y, Z be Pauli matrices, where Y is defined unconventionally as
Y = XZ. However, set of matrices {±I,±X,±Y,±Z} still form a group under
multiplication and no two of X,Y, Z commute. Let us define block diagonal
4k × 4k unitary matrices gi as follows:

gi :=



i−1⊕
t=1

I ⊕ Y ⊕
k+F (i)−1⊕

t=i+1

I ⊕X ⊕
2k⊕

t=k+F (i)+1

I if i ≤ k
2

i−1⊕
t=1

I ⊕ Y ⊕
k+F (i)−1⊕

t=i+1

I ⊕ Z ⊕
2k⊕

t=k+F (i)+1

I if i > k
2

For matrix gi only i-th and k + F (i)-th block differ from identity. Consider
group G = 〈g1, . . . , gk〉. Note that G is not abelian if and only if there are
two generators gi and gj such that i ≤ k/2 < j and F (i) = F (j). Thus G is
not abelian if and only if function F has a split collision. The input for group
commutativity is set {1, . . . , k}, where element i encodes generator gi.

Now we show how to simulate oracles OG and O−1
G for the matrix group

G if we are given black-box function F for the unique split collision problem.
Note that we need to query F only in cases when a previously unused generator
gi is involved, since in all the other cases we already know the 4k × 4k matrix
explicitly. In the case when a previously unused generator gi is involved we need

10

to query the value of F (i) in order to find the number of the block which has to
be X or Z (X if i ≤ k/2 and Z if i > k/2). In each query at most 2 previously
unused generators are involved, thus we need to make no more than 2 queries
to F per each query to OG or O−1

G . In quantum case due to uncompution we
need twice as much, i.e., no more than 4 queries. In any case the number of
queries needed to simulate oracles OG and O−1

G is bounded by a constant.
We have reduced unique split collision problem to group commutativity prob-

lem of a matrix group G. We have also seen that the number of queries needed
to simulate oracles OG and O−1

G is bounded by a constant. Therefore, we can
claim that query complexity of group commutativity problem is at least of the
same order as unique split collision problem. In other words, the same lower
bounds apply for query complexities of group commutativity problem as for
unique split collision problem. By applying Lemma 5 we get our theorem.

4 Conclusion

We have seen both randomized and quantum algorithms for testing group com-
mutativity. Both of the algorithms were based on a random walk. However,
random walk that formed a basis for the quantum algorithm was not the same
as the one used in Pak’s randomized algorithm.

Obtained bounds for the query complexity of group commutativity problem
are summarized in the the table below.

Lower bound Upper bound
(query complexity of the algorithm presented)

Randomized Ω(k) O(k)
Quantum Ω

(
k2/3

)
O
(
k2/3 log k

)
From the above table we see that the query complexity for Pak’s randomized

algorithm was optimal up to a constant. Whereas, the query complexity for the
quantum algorithm presented in Section 2.2 differs from optimal by no more
than a logarithmic factor.

References

[1] Frédéric Magniez, Ashwin Nayak: “Quantum Complexity of Testing Group
Commutativity”, Proceedings of 32nd International Colloquium on Au-
tomata, Languages and Programming, Springer-Verlag, 2005

[2] Igor Pak: “Testing commutativity of a group and the power of randomiza-
tion”, Electronic version at
http://www.math.mit.edu/∼pak/research.html, 2000

[3] Mario Szegedy: “Spectra of Quantized Walks and a
√
δε-Rule”, arXiv.org

report quant-ph/0401053, 2004

11

	Introduction
	Algorithms for group commutativity
	Classical algorithms
	Quantum algorithm
	Constructing random walk
	Evaluating parameters

	Lower bounds
	Conclusion

